## Raster Image Correlation Spectroscopy

 RICS
## Novel Idea: Raster Image Correlation Spectroscopy

We can have a combination of very high time resolution with sufficient spatial resolution.

## Major benefits of RICS:

$>$ It can be done with commercial laser scanning microscopes (either one or two photon systems)
$>$ It can be done with analog detection, as well as with photon counting systems, although the characteristic of the detector must be accounted for (time correlations at very short times due to the analog filter)
$>$ RICS provides an intrinsic method to separate the immobile fraction
$>$ It provides a powerful method to distinguish diffusion from binding

## Raster Scanning

Pixel time Start here


## Temporal information hidden in the raster-scan image: the RICS approach



## How is the spatial correlation done?



In the $x$ direction
PLUS In the $y$ direction

$$
\begin{aligned}
& (0,0 \times 0,0)+(0,1 \times 0,1)+(0,2 \times 0,2) \ldots(0,127 \times 0,127) \\
& +(1,0 \times 1,0)+(1,1 \times 1,1)+(1,2 \times 1,2) \ldots(1,127 \times 1,127)
\end{aligned}
$$

One number is obtained for x and y and is divided by the average intensity squared

## How to use a stack of images?



## The RICS approach: 2-D spatial correlations

In a raster-scan image, points are measured at different positions and at different times simultaneously

If we consider the time sequence, it is not continuous in time If we consider the pixel sequence, it is contiguous in space

In the RICS approach we calculate the 2-D spatial correlation function (similarly to the ICS method of Petersen and Wiseman)

$$
G_{R I C S}(\xi, \psi)=\frac{<I(x, y) I(x+\xi, y+\psi)>}{<I(x, y)>^{2}}
$$

The variables $x$ and $y$ represent spatial increments in the $x$ and $y$ directions, respectively


2-D spatial correlation can be computed very efficiently using FFT methods.
To introduce the "RICS concept" we must account for the relationship between time and position of the scanning laser beam.

## The RICS approach for diffusion

The the dynamics at a point is independent on the scanning motion of the laser beam

$$
G_{R I C S}(\xi, \psi)=S(\xi, \psi) \times G(\xi, \psi)
$$

Consider now the process of diffusion. The diffusion kernel can be described by the following expression

$$
P(r, t)=\frac{1}{(4 \pi D t)^{3 / 2}} \exp \left(-\frac{r^{2}}{4 D t}\right)
$$

There are two parts:
(1) the temporal term,
(2) the spatial Gaussian term

For any diffusion the amplitude decreases as a function of time and the width of the Gaussian increases as a function of time



## RICS: space and time relationships

At any position, the ACF due to diffusion takes the familiar form:
$G(\xi, \psi)=\frac{\gamma}{N}\left(1+\frac{4 D\left(\tau_{p} \xi+\tau_{l} \psi\right)}{w_{0}^{2}}\right)^{-1}\left(1+\frac{4 D\left(\tau_{p} \xi+\tau_{l} \psi\right)}{w_{z}^{2}}\right)^{-1 / 2}$
$t_{p}$ and $t_{1}$ indicate the pixel time and the line time.
 The correlation due to the scanner movement is:

$$
S(\xi, \psi)=\exp \left(-\frac{\left[\left(\frac{2 \xi \delta r}{w_{0}}\right)^{2}+\left(\frac{2 \psi \delta r}{w_{0}}\right)^{2}\right]}{\left(1+\frac{4 D\left(\tau_{p} \xi+\tau_{l} \psi\right)}{w_{0}^{2}}\right)}\right)
$$



Pixel

Where $\delta r$ is the pixel size. For $\mathrm{D}=0$ the spatial correlation gives the autocorrelation of the PSF, with an amplitude equal to $\gamma / \mathbf{N}$. As $\mathbf{D}$ increases, the correlation (G term) becomes narrower and the width of the $S$ term increases.

## RICS Simulations of three different diffusion rates:

Box size $=3.4 \mu \mathrm{~m}$ sampling time: 1) $32 \mu \mathrm{~s} / \mathrm{pixel} 2) 8 \mu \mathrm{~s} / \mathrm{pixel} 3) 4 \mu \mathrm{~s} / \mathrm{pixel}$


## Horizontal and Vertical fits:

Horizontal ACF


## Vertical ACF



Brown et al, JMI, 2007

## How to Setup the Laser Scanning Confocal Microscope

> Scan Speeds ( $\mu \mathrm{s} / \mathrm{pixel}$ ):

- $4 \mu$ s for fast molecules $D>100 \mu \mathrm{~m}^{2} / \mathrm{s}$
- $8-32 \mu$ s for slower molecules $D=1 \mu \mathrm{~m}^{2} / \mathrm{s}-100 \mu \mathrm{~m}^{2} / \mathrm{s}$
- 32-100 $\mu$ s for slower molecules $D=0.1 \mu \mathrm{~m}^{2} / \mathrm{s}-10 \mu \mathrm{~m}^{2} / \mathrm{s}$
> Pixel Size:
- 3-4x smaller than the Point Spread Function (PSF 300nm)
> Molecular Concentrations
-Same conditions as conventional FCS methods


## Common Errors in RICS

Scanning Too Slow (100 us/pixel, D = 300 um²/s)



Courtesy of Jay Unruh

## RICS: Fits to spatial correlation functions

## Olympus Fluoview300 LSM

EGFP in solution


Spatial ACF


Fit to Spatial ACF


## What ROI size to use? How many frames to acquire?




## Obtaining concentration from RICS

Fluorescein in 100mM TRIS pH 9


Brown et al, JMI, 2007

## How we go from solutions to cells?

In cells we have an immobile fraction
The 2-D-spatial correlation of an image containing immobile features has a very strong correlation pattern

We need to separate this immobile fraction from the mobile part before calculating the transform


How is this achieved?

## Does noise from the detectors correlate?

In a "truly immobile" bright region, the intensity fluctuates according to the Poisson distribution due to shot noise.

The time correlation of the shot noise is zero, except at time zero.

The spatial correlation of the intensity at any two pixels due to shot noise is zero, even if the two points are within the PSF.

If we subtract the average intensity and disregard the zero time-space point, the immobile bright region totally disappear from the correlation function

## Attention!!!!

This is not true for analog detection, not even in the first

Photon counting: ACF of a bright immobile particle


Analog detection: ACF of a bright immobile particle order approximation. For analog detection the shot noise is time (and space) correlated.

## Formula used to subtract background:



## Spatial Correlation



Spatial correlation before subtracting background


Subtract the average


Spatial Correlation of entire image After subtracting image

Average intensity of each pixel on the overall stack: $\overline{I(x, y)}$
The intensity of each pixel minus the average intensity from entire stack for $I_{i}(x, y)-\overline{I(x, y)}$ each pixel: However, this yields negative values.

A scalar must be added : $\quad a=\bar{I}$

$$
\operatorname{ICS}\left(F_{i}(x, y)\right) \quad \text { where } \quad F_{i}(x, y)=I_{i}(x, y)-\overline{I(x, y)}+a
$$

## How to subtract immobile features from images?




## Subtraction of moving average



Frames

## Moving average operation on frames:



Operation is repeated for frame \#6 - average between 2-11 frame \#7 - average between 3-12

## Example of the Removal of Immobile Structures and Slow Moving Features



Spatial ACF
No removal

Spatial ACF
With removal


Fit using 3-D diffusion formula
Pixel size $=0.092 \mu \mathrm{~m}$
Pixel time $=8 \mu \mathrm{~s}$
Line time $=3.152 \mathrm{~ms}$
Wo $=0.35 \mu \mathrm{~m}$


## Conclusions



## Summary

- Measures dynamic rates from the $\mu$ sec-msec time scale
- Anyone with a commercially available instrument can use it
- Immobile structures can be filtered out and fast fluctuations can be detected
- RICS has high spatial and temporal resolution
- The range of these dynamic rates covers a wide range from immobile to cytosolic diffusions (0.2-12um2/s)
- Other types of processes and interactions are also measured
- Line scanning is essential for determination of binding process and complements the RICS analysis


## We have expanded the RICS methods to do Cross-Correlation RICS (ccRICS)

## The ccRICS approach

The spatial correlation function
$G_{c c R I C S}(\xi, \psi)=\frac{\left\langle I_{1}(x, y) I_{2}(x+\xi, y+\psi)\right\rangle}{\left\langle I_{1}(x, y)\right\rangle\left\langle I_{2}(x, y)\right\rangle}-1$
The variables $\xi$ and $\psi$ represent spatial increments in the x and y directions, respectively


The $\mathrm{G}_{\mathrm{cc}}(0,0)$ value and bleedthrough

$$
G_{c c}(0,0) \propto\left[\frac{f_{11} f_{12}\left\langle N_{1}\right\rangle+f_{21} f_{22}\left\langle N_{2}\right\rangle}{f_{11} f_{12}\left\langle N_{1}\right\rangle^{2}+\left(f_{11} f_{22}+f_{21} f_{12}\right)\left\langle N_{1}\right\rangle\left\langle N_{2}\right\rangle+f_{21} f_{22}\left\langle N_{2}\right\rangle^{2}}\right]
$$

## Experimental issues

- The volume of excitation and emission at the two excitation wavelengths must superimpose (we are using the Olympus FV1000 LSCM for these experiments)
- Bleedthrough of the green into the red channel must be small ( $<5 \%$ )
- FRET will strongly decrease the ccRICS signal
- High ratio of labeled to unlabeled molecules are needed (if you have only $10 \%$ labeled, in a complex of $1: 1$, you will only have $1 \%$ of the complexes labeled with both proteins)

Cells. MEF transfected Vinculin, FAK and paxillin. cDNA were ligated to EGFP or mCherry at the C-terminal end.

Microscopy. Olympus FV1000 with $60 \times 1.2$ NA water objective, $12.5 \mathrm{us} /$ pixel, $256 \times 256$ pixels $12.5 \mu \mathrm{~m}$ square, 100 to 200 frames collected for each sample. 1 frame/s.

EGFP excitation at 488 nm ( $0.5 \%$ ) and mCherry at 559 nm (adjusted to a max of $1.5 \%$ ).
Emission filters at $505-540 \mathrm{~nm}$ and $575-675 \mathrm{~nm}$, for the green and red channels, respectively.
Overlap of the volume of observation was tested by imaging single 100 nm fluorescent beads carrying two colors simultaneously

## VIN and PAX co localize at adhesions but they are moving independently in the cytoplasm



The cross-correlation increases for the slow fluctuations (at $\mathrm{MAV}=40 \mathrm{~s}$ ). It is round in shape indicating that it is generated at single locations.

## FAK and PAX co localize at adhesions but they are moving independently in the cytoplasm



The cross-correlation increases for the slow fluctuations (at MAV=40s). It is round in shape indicating that it is generated at single locations and it is very small.

Schematic representation for the interpretation of the ccRICS experiment. Simulation of binding and diffusion


## Distribution of fraction of cross-correlation in the cell. Correlation with adhesion disassembling

ccRICS by scanning a region of interest across the image Calculating the ratio $G_{c c} / A V\left(G_{1}, G_{2}\right)$


VIN-PAX MAV=10s


VIN-PAX MAV=40s

There is "more" cross-correlation at the locations of adhesion disassembling

## Summary of ccRICS

- We developed a toolbox for biophysicists and cell biologists to address common questions regarding the formation of protein complex, their spatial distribution and their stoichiometry
- ccRICS is extremely powerful at detecting joint diffusing proteins and in separating diffusion from binding processes
- The Paxillin, vinculin and FAK never crosscorrelate in the cytoplasm before binding to the focal adhesion. We only detect cross correlation due to dissociation of large clusters of proteins.


## What is the stoichiometry of these clusters and is this stoichiometry crucial for the biological system?



Random


## The Number \& Molecular Brightness (N\&B) Method



## Existing Methods to determine protein concentration and aggregation of proteins in cells

1. Calibration of the free fluorophore based on intensity


## 2. Förster resonance energy transfer (FRET)



This method is very sensitive to detect the formation of pairs.

##  the



The intensity distribution accounts for the fluctuations of photons from the molecule freely diffusing through the exitation profile. Thus, the overall photon counting count distrubution is the weighted superposition of individual Poissonian distributions for each intensity values with a scaling amplitude. The fluctuations light intensity results in a broadeing of photon count distribution with respect to a pure poisson distribution. As the fluctuations increases, the photon count distribution broadens



## 4. Photon Counting Histogram Analysis



Red is PCH Black is Poisson

## 3. Image correlation Spectroscopy (ICS)



Spatial Autocorrelation Function


However, the events must be slow >1sec (no movement during one frame) and the aggregates must be large.

## The Number and Brightness (N\&B) analysis

Purpose: Provide a pixel resolution map of molecular number and aggregation in cells

Method: First and second moment of the fluorescence intensity distribution at each pixel

Source: Raster scanned image obtained with laser scanning microscopes TIRF with fast cameras
Spinning disk confocal microscope
Output: The N and B maps, B vs intensity 2D histogram
Tools: Cursor selection of pixel with similar brightness Quantitative analysis of center and std dev of the $e$ and $n$ distribution
Tools for calibration of analog detectors
Tutorials: mathematical background, data import, analysis examples (our web site

How to distinguish pixels with many dim molecules from pixels with few bright molecules?

## Average first moment) <br> $$
<k>=\frac{\sum_{i} k_{i}}{K}
$$




Variance $\sigma^{2}=\frac{\sum_{i}\left(k_{i}-<k>\right)^{2}}{K}$
$K$



$G(0)=\sigma^{2} /\langle k>2=1 / \mathrm{N}$

- Given two series of equal average, the larger is the variance, the less molecules contribute to the average. The ratio of the square of the average intensity $\left(<k>^{2}\right)$ to the variance ( $\sigma^{2}$ ) is proportional to the average number of particles < $\mathrm{N}>$.
* Originally developed by Qian and Elson (1990) for solution measurements.


## Calculating protein aggregates from images

This analysis provides a map of < $\mathrm{N}>$ and brightness ( B ) for every pixel in the image. The units of brightness are related to the pixel dwell time and they are "counts/dwell time/molecule".

$$
\begin{aligned}
& \left\langle k>=\frac{\sum_{i} k_{i}}{K} \quad \sigma^{2}=\frac{\sum_{i}\left(k_{i}-\langle k\rangle\right)^{2}}{K}\right. \\
& B=\frac{\langle k>}{\langle N\rangle}=\frac{\sigma^{2}}{\langle k\rangle} \\
& \langle N\rangle=\frac{\langle k\rangle^{2}}{\sigma^{2}} \\
& \sigma^{2}=\text { Variance } \\
& <\mathrm{k}>=\text { Average counts } \\
& N=\text { Apparent number of molecules } \\
& \mathrm{B}=\text { Apparent molecular brightness } \\
& \mathrm{K}=\text { \# of frames analyzed }
\end{aligned}
$$



## Selecting the dwell time

To increase the apparent brightness we could increase the dwell time, since the brightness is measured in counts/dwell time/molecule.


## What contributes to the variance?

Variance due to particle number fluctuations

$$
\begin{aligned}
& \sigma_{n}^{2}=\mathcal{E}^{2} n \\
& \sigma_{d}^{2}=\varepsilon n
\end{aligned}
$$

Variance due to detector shot noise

The measured variance contains two terms, the variance due to the particle number fluctuation and the variance due ${ }^{=} \sigma^{-} t^{+}{ }^{+} \sigma^{2}$ detector count s These two terms have different dependence on the

$$
\sigma_{n}^{2}=\varepsilon^{2} n \quad \sigma_{d}^{2}=\varepsilon n \text { (for the photon counting detector) }
$$

Both depend on the intrinsic brightness and the number of molecules. We can inyert the equations $n$ and obtain n and $\varepsilon$
$s$ is the true molen.ular hr

## How to Calculate n and $\varepsilon$

$$
B=\frac{\sigma^{2}}{\langle k\rangle}=\frac{\sigma_{n}{ }^{2}}{\langle k\rangle}+\frac{\sigma_{d}{ }^{2}}{\langle k\rangle}=\frac{\varepsilon^{2} n}{\varepsilon n}+\frac{\sigma_{d}{ }^{2}}{\langle k\rangle}=\varepsilon+1
$$

This ratio identifies pixels of different brightness due to mobile particles.
The "true" number of molecules n and the "true" molecular brightness for mobile particles can be obtained from

$$
n=\frac{<k>^{2}}{\sigma^{2}-<k>}
$$

$$
\varepsilon=\frac{\sigma^{2}-<k>}{<k>}
$$

If there are regions of immobile particles, n cannot be calculated because for the immobile fraction the variance is $=<k>$. For this reason, several plots are offered to help the operator to identify regions of mobile and immobile particles. Particularly useful is the plot of NvsB.

## Quadratic dependence of the variance on particle brightness 20 nM EGFP in solution as a function of laser power



2-photon excitation using photon counting det

## Identification of mobile and immobile molecules




If we change the laser power, a plot of the ratio variance/intensity vs intensity can distinguish the mobile from immobile fraction. The two curves are for different pixel integration times.

The effect of the immobile part: with photon counting detectors
Fluorescent beads in a sea of 100nM Fluorescein.


## Brightness and number of molecules can be measured independently






## EGFP in CHO-k1 (1-Photon LSM)

homogenous Brightness \& heterogeneous Number of Molecules


Average intensity


## Paxillin assembles as monomers and disassembles as aggregates as large as 8-12



## Assembly and disassembly occurs in the order of minutes

## 100 Frame averageSelecting large aggregates



## Cross N\&B

## Conceptual illustration of Cross N\&B

Uncorrelated





## Cross N\&B Analysis determines stoichiometry



The co-variance principle and the derivation of the ccN\&B method

$$
\begin{aligned}
& \sigma_{c c}^{2}=\frac{\sum\left(G_{i}-\langle G>)\left(R_{i}-\langle R\rangle\right)\right.}{K} \\
& N_{c c}=\frac{\langle G\rangle\langle R\rangle}{\sigma_{c c}^{2}}
\end{aligned}
$$

Definition of co-variance. It is the average of product of the fluctuations in the
 number of molecules. It is the co-variance divided by the product of the intensity in the two channels
$K$ is the number of frames. $\sigma^{2}$ the variance and $<>$ indicat

## To calibrate the system we need to know the brightness of the monomers

(1)



4) Now we have $2: 1$ stoichiometry. We have more brightness in B1 but the same in B2

## What to look for:

1) First we need to calibrate the monomers
2) We have to see if there is positive cross variance
3) We have to see where the cross variance occurs in respect to the brightness of Ch1 and Ch2

## The unknown sample: Vinculin-EGFP and Paxillin-mcherry



Look at the brightnesses that coincide for Ch1 a
We must find for each value of B1 in one pixel, what is the The fluintuatione muct he rnerrolated en we nulv lonk at th

## Selecting different regions of the image



AFH1 Make sure I didnt mess this up. Rick Horwitz, 6/18/2008

Cross -correlations occur at specific pixels at the adhesions Vinculin-EGFP and Paxillin-mcherry

1. Large Cross variance is only seen at the adhesion 2. Points of large-co-variance-occur at different regions an



B





We determined that the brightness for monomers $\mathrm{B} 1=1.118$ and $\mathrm{B} 2=1.22$. Thus the $\mathrm{ccB} 1=6 \mathrm{x}$ monomer and for $\mathrm{cc} \mathrm{B} 2=3 \times$ the monomer

## Simulations: effect of bright immobile features



## FAK and Paxillin

Selection map



Selection map




Digman, M.A., et al, PNAS Jan.23, 2009 Ahead of print

## FAK-EGFP

## Pax-mCherry

 mutFAK-PAX cell shows no cross-correlation although the cell

## Summary

- N\&B distinguishes between number of molecules and molecular brightness in the same pixel
- The acquisition for the N\&B can be done with a commercial Laser Scanning Microscope (LSM) and the same data used for RICS can be used to map $N$ and $B$.
- The Immobile fraction can be separated since it has a Brightness value $=1$
- The N\&B analysis of paxillin at adhesions shows large aggregates of protein during disassembly.
- Cross N\&B allows us to determine the stoichiometry of the complexes.


## Additional Reading

1) Jay R Unruh and Enrico Gratton.Analysis of molecular concentration and brightness from fluorescence fluctuation data with an electron multiplied CCD camera.Biophys J. 2008; [epub ahead of print].
2) Michelle A Digman, Rooshin Dalal, Alan R Horwitz, and Enrico Gratton.Mapping the number of molecules and brightness in the laser scanning microscope.Biophys J. 2008; 94(6): 2320-2332.
3) Rooshin B Dalal, Michelle A Digman, Alan R Horwitz, Valeria Vetri, and Enrico Gratton. Determination of particle number and brightness using a laser scanning confocal microscope operating in the analog mode. Microsc Res Tech. 2008; 71(1): 69-81.
4) Yan Chen, Joachim D Müller, Qiaoqiao Ruan, and Enrico Gratton. Molecular brightness characterization of EGFP in vivo by fluorescence fluctuation spectroscopy. Biophys J. 2002; 82(1): 133-44.
5) Alberto Garcia-Marcos, Susana A Sánchez, Pilar Parada, John S Eid, David M Jameson, Miguel Remacha, Enrico Gratton, and Juan P G Ballesta. Yeast ribosomal stalk heterogeneity in vivo shown by two-photon FCS and molecular brightness analysis. Biophys J. 2008; 94(7): 2884-2890.
6) Michelle A Digman, Paul W Wiseman, Colin K Choi, Alan R Horwitz, and Enrico Gratton. Mapping the stoichiometry of molecular complexes at adhesions in living cells. Proc Natl Acad Sci USA. 2008; [submitted].
